
70 The Delphi Magazine Issue 50

XML: A Delphi
Implementation, 2
by David Baer

In the two months since I started
to write part one of this article,

the XML juggernaut has continued
to gather momentum. At that time
there were ten or twelve books on
the subject at my local technical
bookstore. Today the number is
closer to twenty. So, it looks like
we’re on to something here.

We’ll pick up where we left off
last time, adding some additional
capabilities to the class framework
begun in part one. The main order
of business will be adding an XML
input capability to the framework,
but we’ll supply a couple of other
convenient features as well. I won’t
attempt to recap the material dis-
cussed in part one here, other than
to remind you that the focus of the
framework’s capabilities is on the
use of XML for inter-application
data communications. There are
any number of browser oriented
capabilities which we’ll be ignoring
in this context.

Before we get started, I need to
address two errors in part one. The
first was simply a case of typing on
auto-pilot and not spotting the
error until after the magazine had
gone to press. I said that XML
names were like Delphi names, but
could also contain hyphens, peri-
ods and semicolons. That should
have been colons, not semicolons.

A second correction is needed
for something that was an outright
case of my not having all the facts.
In the discussion of Document Con-
tent Declarations (DCDs), I stated
that for elements identified as con-
taining dates, the format of such
items must comply with an ISO
standard that mandated a format
of YYYYMMDD. I didn’t learn until
later that there are a number of
compliant formats, of which the
preferred is YYYY-MM-DD. The
standard allows the hyphens to be
dropped and even allows for omis-
sion of the century. How quaint. In

all, this was a disappointing dis-
covery, but the situation is still
preferable to the usual chaos of the
myriad of localized date formats
found in the world today.

Finally, there’s one generaliza-
tion made in part one that merits
clarification. This is not exactly
relevant to building a Delphi XML
capability. On the other hand, this
subject is extremely important in
the evolution of XML, and it’s
closely tied in with the foundations
upon which Microsoft is basing
their own XML E-commerce func-
tionality, which is being promoted
in the BizTalk initiative.

Data Redux
Recall that I described DCDs as an
emerging and preferable alterna-
tive to Document Type Definitions
(DTDs) for use in XML document
validation. I had a chance to hear
Adam Bosworth, Microsoft’s prin-
cipal XML evangelist, speak in May
of this year, and even had a brief
opportunity to ask him a few ques-
tions directly after the talk. One of
those questions had to do with the
viability of DCDs as implemented
in IE5 regarding the degree of com-
pliance with whatever the W3C
eventually blessed as a standard.
His reply was that he was growing
optimistic that they were close (in
IE5) to what that standard would
look like upon final approval (but
he also emphasized that Microsoft
would definitely support whatever
specification prevails in the end).

About a month later, I received
an email from Our Esteemed Editor,
saying that he had just returned
from the Microsoft Tech Ed Europe
conference. At that event, MS Vice
President Paul Maritz had empha-
sized one theme. He told the atten-
dees that if they took only a single
message home with them, it should
be that Microsoft was resolutely
committed to supporting XML and

Data Reduced on all fronts. OEE’s
question: what is this Data
Reduced business? Is it the same
thing as the DCD capability?

Well, I didn’t know. I had never
heard of this thing called XML Data
Reduced, and I’m fairly confident
that Adam Bosworth never used
that phrase in his presentation
only a few weeks earlier. It was off
to the web to see what I could find.
The answers were not easy to
come by. For all of Paul Maritz’s
stated MS commitment to XDR, the
term was not in evidence on MS’s
MSDN XML pages (a good source
of information, at http://msdn.
microsoft.com/xml/c-frame.htm#/
xml/default.asp at the time of writ-
ing). Nor could I find a concise
explanation at the W3C XML site,
other than that this whole topic
comes under the general heading
of XML Schemas.

I finally found an authoritative
source of information in Lee Buck,
the principal technologist of a
company called Extensibility.
Extensibility produces a product
that allows organizations who
want to begin working with XML
schemas to do so while minimizing
the risk of too-early adoption
(check www.extensibility.com).
To make a long story short, Lee
filled in the gaps of my understand-
ing, and the following is what
seems to be going on.

MS and others submitted a
proposal in early 1998 for an
improved alternative to DTDs.
This capability was called XML
Data. As a superset of DTDs, XML
Data was a large and fairly
ambitious specification that was
unlikely to see any kind of rapid
adoption. But the improvements
over DTDs were significant.

First of all, the declarations were
in straight XML, not the confusing,
foreign syntax of DTDs. Further-
more, a number of serious defi-
ciencies of DTDs were rectified.
Improved capabilities include data
typing, min/max cardinality and
value range constraints. Signifi-
cantly, the specification allowed
for a flexible type of inheritance for
declarations (these are, after all,
specified in XML, making them nat-
urally extensible).



October 1999 The Delphi Magazine 71

But complexity was still a major
concern. As a result, a group,
which again included Microsoft,
submitted an alternative schema
proposal later in 1998 which
simplified the XML Data specifica-
tion. This alternative was called
Document Content Declarations.

So what’s Data Reduced? You’ve
probably already guessed it: it
refers to an XML Data specification
that’s been, well, reduced. It too is
a simplification of the original XML
Data proposal. To the casual
observer, the two specifications,
DCDs and XDR, are rather similar,
and they address many of the same
concerns.

But if the broad strokes are the
same, the details are not. Confu-
sion is compounded by the fact
that MS’s web pages usually refer-
ence these XML developments
generically as ‘XML schema’. So
what’s with MS? Can’t they make
up their minds? Certainly I’m in no
position to answer that, but it’s evi-
dent that the DR flavor of XML
schema specification is currently
very much in favor at MS. What-
ever proposal gains the final W3C
blessing (and there are still other
proposals kicking around as well, if
only as dark horses at this point),
I’m convinced that the schema
capability will play an extremely
important role in XML’s future.

A Parcel Of Parsers
Well, enough of ongoing XML
developments. Let’s get down to
the business of adding a parse/
load capability to the framework.
The first item on the agenda, need-
less to say, is to determine where
the parsing capability is going to
come from.

One alternative is to write one. If
we wanted a basic non-validating
parser that did not need to resolve
external entities, this really would-
n’t be all that difficult. However, if
validation is added as a require-
ment, that’s quite another matter.
If we also add the requirement that
the parser must support whatever
schema validation flavor wins the
day (when that day comes), then
we can kiss more than a few of our
weekends goodbye over the next
year.

No, it’s clearly preferable to inte-
grate an existing capability. Fortu-
nately, there’s a good deal of
technology available for this, even
when we add the obvious require-
ment that it must be freely avail-
able. IBM, Sun, Microsoft and
others have solid implementations
available for the cost of an online
download session.

So, let’s add another rather obvi-
ous requirement that it must easily
integrate with our Delphi-based
class framework. That pretty much
narrows the field to one. The offer-
ings of IBM et al are either Java or
C++ based. Microsoft’s capabilities
are predictably accessed via COM.

So, let’s explore the MS possibili-
ties a bit further. The W3C offers
recommendations for two XML
parsing standards. One is the Doc-
ument Object Model, within which
a parser obviously exists, but that
parser is not exposed to clients.
The other standard is known as
Simple API for XML (SAX, for short).
Clients of a SAX parser must supply
their own storage and relationship
management capabilities. The SAX
parser is responsible for many
things: parsing, validating, resolv-
ing external entity references, and
so forth. But once the client is
handed pieces of the incoming
document, its job is done.

So, SAX would appear to be the
way to go. We’ve already got the
storage and management issues
addressed, and we don’t need the
overhead of a redundant parallel
set of capabilities such as those
we’d get if we called upon DOM
services for parsing.

There’s just one small problem,
though. The msxml.dll does not
currently include a SAX offering.
DOM is there in full glory, but
there’s no SAX support. Going back
to my May encounter with MS’s
Adam Bosworth, he said that the
SAX capability would in all proba-
bility be forthcoming, but he didn’t
know when that would be.

So, we’re stuck with DOM.
Although this isn’t ideal, it’s not
really too onerous. We will have a
momentary bloat of redundantly
maintained document nodes
during the loading operation. But
once the data is transferred into

our Delphi class nodes, the DOM
objects will be destroyed.

Start Your Parsers
To prepare your machine to work
with what follows, you’ll need to
ensure that you have the latest
copy of msxml.dll. If you’ve
installed IE5, then you almost cer-
tainly have it. If not, see if you have
this file installed. If it’s there and
its size is in the neighborhood of
500Kb, then that’s the one. If it’s
there but its size is only about
100Kb, then that’s an old version
that doesn’t contain the support
for DOM. You’ll need to get the cur-
rent version, which is available
from MS’s website.

I didn’t do any of these things.
Although I know it’s normally con-
sidered unsafe to install a dll by
simply copying it from another
machine, I decided to throw
caution to the wind and try this
shortcut. I picked up the dll from a
machine upon which IE5 had been
installed, and loaded it onto both
Windows95 and NT systems. After
two months, I’ve yet to see any
adverse effects. However, I can’t
guarantee your experience would
be as trouble free.

If you need to install it, then
you’ll also need to ensure that it’s
been registered. To register it, exe-
cute regsrv32 msxml.dll from the
Run prompt. The other thing that
will be needed is the type library
definition for the COM classes con-
tained in msxml.dll. If you wish,
you may use Delphi to import this
declaration, or you may just use
the copy I’ve included with the
accompanying source files on this
month’s CD-ROM.

I have to admit that I was some-
what intimidated the first time I
took a look at the type library file.
At over 1,700 lines, there’s a lot to
digest. But if you’ve become famil-
iar with the DOM methods (visiting
the MSDN site previously men-
tioned is one way to do so), it soon
starts to make sense and is not
nearly so overwhelming. I also
must say that in writing and testing
the code for this article, I was con-
stantly amazed at how trouble free
the process was. Most things
simply worked the first time out,



72 The Delphi Magazine Issue 50

and the few hitches encountered
were minor and brief.

Load ‘Em Up
Adding an input capability to the
class framework was done by
adding two new public methods to
the TXmlDDocument class, LoadFrom-
File and LoadFromStream. Listing 1
contains some snippets of the
frameworks class definitions,
mostly showing only additions and
modifications to the full set of
declarations.

Note both methods have three
parameters. The first is the source
file name or the stream reference.
In the case of LoadFromFile, the
name can actually specify a URL,
not just a local or network accessi-
ble file. The second parameter,
ValidateOnParse, allows any valida-
tion during parsing to be skipped.

The third parameter, Discard-
UnsupportedItems, requires a little
explanation. Recall from last time
that there were several XML docu-
ment component types that we
weren’t bothering to support. For
our load capability, if any of these
types are encountered, we offer
the choice of simply discarding
them with no further ado, or of

raising an exception (the default
choice).

Listing 2 contains the implemen-
tation code for all the routines
participating in the parse/load pro-
cess. As you can see in both load
methods, invoking the DOM parse
services requires very little code.
LoadFromFile obtains an IXMLDOM-
Document interface reference and
executes the DOM method load,
the parameter of which specifies
the URL of the input source.

LoadFromStream has to do a little
more setting up. An alternative to
the DOM load method is LoadXML,
which takes a string parameter.
Here, if the input stream is not a
TStringStream, we create one and
copy the contents of the input
stream into it. At that point we’re
ready to call the LoadXML method. If
you examine the type library decla-
rations, you’ll note that all strings
are WideStrings. We don’t need to
concern ourselves with this, as
Delphi takes care of the details.

Most of the code needed for our
parsing/loading is involved in
transferring the document nodes
from DOM nodes to our own Delphi
object nodes. The method Load-
FromDOMDocument gets the ball roll-
ing. Transferring nodes from DOM
to our nodes is a process handled

by the recursively called method
LoadChildNodes. Before calling this
to get the recursion started, Load-
FromDOMDocument needs to confirm
we’ve got something to transfer.

The msxml load routines do not
raise an exception upon encoun-
tering erroneous input. Instead,
the DOM document object sup-
plies a property, parseError. This
is an interface which provides
several properties containing
error information. One of those
properties, errorCode, will be non-
zero if an error was encountered.
When this happens, our frame-
work will transform the condition
into a Delphi exception which
passes the error information
through in an EXmlDParseError
object (Listing 1 has the declara-
tion). We pass the DOM parseError
interface to the exception con-
structor, which does the transfer.

While we’re on the subject of
EXmlDParseError, note that I’ve
included something a little non-
standard. This is a convenience
method, ShowParseError, which
formats and shows an error dialog
with pertinent information.

Excavating DOM Nodes
Apart from one little surprise in
how the MS facilities deal with

type
TCharEntity = (ceLt, ceGt, ceQuot, ceApos, ceAmp);
TCharEntities = set of TCharEntity;
TSubstituteCharEntitiesEvent = procedure(Sender: TObject;
var Text: String; var SkipTranslation: Boolean) of
Object;

EXmlDError = class(Exception);
EXmlDParseError = class(Exception)
FErrorCode:   Integer;
FReason:      String;
FSrcText:     String;
FLine:        Integer;
FLinePos:     Integer;

public
constructor Create(ParseError: IXMLDOMParseError);
procedure ShowParseError;
property ErrorCode: Integer read FErrorCode;
property Reason: String read FReason;
property SrcText: String read FSrcText;
property Line: Integer read FLine;
property LinePos: Integer read FLinePos;

end;
TXmlDStructureNode = class(TXmlDNode)
private
FAttrList: TXmlDAttrList;
...

public
...
property AttrList: TXmlDAttrList read FAttrList;

end;
TXmlDDocument = class(TXmlDStructureNode)
private
...
FAttrCharEntities: TCharEntities;
FTextCharEntities: TCharEntities;
FOnOutputAttrValue: TSubstituteCharEntitiesEvent;
FOnOutputTextValue: TSubstituteCharEntitiesEvent;
DiscardUnsupportedItems: Boolean;

protected
...
procedure DecodePrologAttrs(S: String);

procedure LoadFromDOMDocument(Doc: IXMLDOMDocument);
procedure LoadChildNodes(ParNode: TXmlDNode;
ParDOMNode: IXMLDOMNode);

procedure LoadAttributes(Node: TXmlDElement;
DOMNode: IXMLDOMNode);

procedure AssignNodeToTreeNode(XmlNode: TXmlDNode;
TreeNode: TTreeNode);

procedure AssignAttrNodesToTreeNodes(ParXmlNode:
TXmlDNode; ParTreeNode: TTreeNode);

public
...
procedure AssignTo(Dest: TPersistent); override;
procedure LoadFromStream(Stream: TStream;
ValidateOnParse: Boolean = True;
DiscardUnsupportedItems: Boolean = False);

procedure LoadFromFile(const FileName: String;
ValidateOnParse: Boolean = True;
DiscardUnsupportedItems: Boolean = False);

...
property AttrCharEntities: TCharEntities
read FAttrCharEntities
write FAttrCharEntities;

property TextCharEntities: TCharEntities
read FTextCharEntities
write FTextCharEntities;

property OnOutputAttrValue:
TSubstituteCharEntitiesEvent
read FOnOutputAttrValue write FOnOutputAttrValue;

property OnOutputTextValue:
TSubstituteCharEntitiesEvent
read FOnOutputTextValue write FOnOutputTextValue;

end;
TXmlDAttrList = class(TPersistent)
private
List:     TStringList;
FOwnerNode: TXmlDStructureNode;

public
...
property OwnerNode: TXmlDStructureNode read FOwnerNode;

end;

➤ Listing 1



October 1999 The Delphi Magazine 73

information in the XML prolog,
transferring the information from
DOM into our framework is quite
straightforward. We’ll get to that in
a moment.

First let’s dispense with prolog
business. In the XML examples
presented in the previous article,
the first XML line always looked
liked this:

<?xml version="1.0"?>

where the version is specified in a
way that looks identical to an
element attribute.

In fact there are two other pieces
of information that can go in the
prolog: encoding and standalone.
For example:

<?xml version="1.0"
encoding="UTF-8"
standalone="yes">

The XML specification doesn’t
define these as attributes or as any-
thing else. They’re just optional
parts of the prolog statement. So
what does the msxml DOM imple-
mentation do with them? It takes
the lot of them and groups them
into an XML component type
called a processing instruction (PI).

You may recall that in part one, I
stated I didn’t think PIs had any
business being used in inter-
application data communications.
They are highly application spe-
cific and can be employed for any
number of things: formatting
instructions, compiler pragmas,
you name it. PIs have a simple

representation in the DOM frame-
work, and it would have taken little
effort to add this extra node type
to our framework. But I truly think
they should be avoided in most
cases, so I’m stubbornly resisting
providing support for them.

Instead, I’ve taken these prolog
‘attributes’ and re-mapped them
from the supplied PI into attrib-
ute-like properties of the
TXmlDDocument class. To do so, I
moved the AttrList property from
the TXmlDElement class up one level
in the hierarchy to TXmlDStructure-
Node. This alteration also necessi-
tated a few modifications to the
methods participating in docu-
ment save processing. If you’re
interested in the details, examine
the code for this article on the
CD-ROM.

➤ Listing 2

constructor EXmlDParseError.Create(ParseError:
IXMLDOMParseError);

begin
inherited Create('XML Parse Error');
FErrorCode := ParseError.errorCode;
FReason := ParseError.reason;
FSrcText := ParseError.srcText;
FLine := ParseError.line;
FLinePos := ParseError.linePos;

end;
procedure EXmlDParseError.ShowParseError;
var S:  String;
begin
S := 'XML Parse Error:' + FReason + 'Line=' +
IntToStr(FLine) + ' LinePos=' + IntToStr(FLinePos);

MessageDlg(S, mtError, [mbOK], 0);
end;
procedure TXmlDDocument.LoadFromFile(const FileName: String;
ValidateOnParse, DiscardUnsupportedItems: Boolean);

var Doc:  IXMLDOMDocument;
begin
Doc := CoDOMDocument.Create;
Doc.validateOnParse := ValidateOnParse;
Self.DiscardUnsupportedItems := DiscardUnsupportedItems;
Doc.load(FileName);
LoadFromDOMDocument(Doc);

end;
procedure TXmlDDocument.LoadFromStream(Stream: TStream;
ValidateOnParse, DiscardUnsupportedItems: Boolean);

var
Doc:  IXMLDOMDocument;
SS: TStringStream;

begin
Doc := CoDOMDocument.Create;
Doc.validateOnParse := ValidateOnParse;
Self.DiscardUnsupportedItems := DiscardUnsupportedItems;
if Stream is TStringStream then
SS := TStringStream(Stream)

else begin
SS := TStringStream.Create('');
SS.CopyFrom(Stream, Stream.Size);

end;
SS.Position := 0;
Doc.loadXML(PChar(SS.DataString));
LoadFromDOMDocument(Doc);
if SS <> Stream then
SS.Free

else
SS.Position := 0;

end;
procedure TXmlDDocument.LoadFromDOMDocument(Doc:
IXMLDOMDocument);

var Err:  IXMLDOMParseError;
begin
Clear;
Err := Doc.parseError;
if Err.errorCode <> 0 then
raise EXmlDParseError.Create(Err);

NodeName := Doc.nodeName;
LoadChildNodes(Self, Doc);

end;
procedure TXmlDDocument.LoadChildNodes(ParNode: TXmlDNode;

ParDOMNode: IXMLDOMNode);
var
ChildDOMNode: IXMLDOMNode;
NewNode:  TXmlDNode;

begin
ChildDOMNode := ParDOMNode.firstChild;
while ChildDOMNode <> nil do begin
NewNode := nil;
case ChildDOMNode.nodeType of
NODE_ELEMENT :
begin
NewNode := CreateElement(ChildDOMNode.nodeName);
LoadAttributes(TXmlDElement(NewNode), ChildDOMNode);

end;
NODE_TEXT :
NewNode := CreateTextNode(ChildDOMNode.nodeValue);

NODE_CDATA_SECTION :
NewNode :=
CreateCDataSection(ChildDOMNode.nodeValue);

NODE_PROCESSING_INSTRUCTION :
DecodePrologAttrs(ChildDOMNode.nodeValue);

NODE_COMMENT :
NewNode := CreateComment(ChildDOMNode.nodeValue);

NODE_DOCUMENT_TYPE :
TXmlDDocument(ParNode).DocumentTypeDefinition :=
ChildDOMNode.xml;

else
if not DiscardUnsupportedItems then
raise EXmlDError(
'XML document contains unsupported ' +
'node type of ' + ChildDOMNode.nodeTypeString);

end;
if (NewNode <> nil) and (ParNode <> nil) then
ParNode.AppendChild(NewNode);

LoadChildNodes(NewNode, ChildDOMNode);
ChildDOMNode := ChildDOMNode.NextSibling;

end;
end;
procedure TXmlDDocument.DecodePrologAttrs(S: String);
var I: Integer;
begin
I := Pos(' ', S);
while I > 0 do begin
FAttrList.Add(StringReplace(
Copy(S, 1, I - 1), '"', '', [rfReplaceAll]));

S := TrimLeft(Copy(S, I + 1, $7FFF));
I := Pos(' ', S);

end;
FAttrList.Add(StringReplace(S, '"', '', [rfReplaceAll]));

end;
procedure TXmlDDocument.LoadAttributes(Node: TXmlDElement;
DOMNode: IXMLDOMNode);

var
I:  Integer;
Attributes: IXMLDOMNamedNodeMap;
Item: IXMLDOMNode;

begin
Attributes := DOMNode.attributes;
for I := 0 to (Attributes.length - 1) do begin
Item := Attributes[I];
Node.FAttrList[Item.nodeName] := Item.nodeValue;

end;
end;



74 The Delphi Magazine Issue 50

As for the rest, the story is fairly
simple. For all but element attrib-
utes, we use the DOM firstChild
and nextSibling properties to
snorkel through the document,
creating the appropriate types on
our side of the fence and copying
the DOM node contents into them.
The code that does this can be
seen in methods LoadFrom-
DOMDocument and LoadChildNodes.

The case statement in Load-
ChildNodes uses constants that
come courtesy of the type library
to identify the DOM node types.
Apart from the aforementioned
special treatment of PIs, there’s
only one other technique to note.
DOM attribute nodes are not
accessed via the usual child and
sibling properties. Instead, DOM
defines an interface, named
IXMLDOMNamedNodeMap in the MS

world, which is used to access
attributes. Copying attribute
values into our element’s AttrList
is performed in method Load-
Attributes.

So there you have it. We’ve
gained powerful parse/load capa-
bilities with little effort. But let’s
not stop there. There’s a couple of
other things we can do to add value
to the class framework.

All This And AssignTo Too?
One thing that would certainly be
convenient on occasion is the abil-
ity to easily load a tree view with an
XML document. After all, the docu-
ment tree structure is a nearly per-
fect mapping. So how do we go
about doing that? It’s easy.

We simply implement a class
derived from TTreeView in which
the Assign method knows how to
transfer the contents of a
TXmlDDocument instance into the

tree view. OK, all of you who are
waving your arms and shouting
‘No! That’s not how you do it!’, give
yourselves a pat on the back, go
outside and take a bonus fifteen
minute coffee break. As for the rest
of you, it’s time for a lesson in
the clever, elegant TPersistent.
AssignTo method.

When writing a class of any com-
plexity, it’s usually easy to identify
what other commonplace classes
have a compatibility with respect
to data structures that can be held
or represented. For such classes,
we can provide a transfer mecha-
nism within our class as a service
within the Assign method. But we
clearly cannot anticipate every
possible compatible class which
would benefit from this assign-
ability.

To accommodate this situation,
the VCL provides us with a highly
flexible alternative. It works as

➤ Listing 3

function CharEntitiesReplace(const S: String;
CE: TCharEntities): String;

begin
Result := S;
if ceAmp in CE then
Result := StringReplace(Result, '&', '&amp;',
[rfReplaceAll]);

if ceLt in CE then
Result := StringReplace(Result, '<', '&lt;',
[rfReplaceAll]);

if ceGt in CE then
Result := StringReplace(Result, '>', '&gt;',
[rfReplaceAll]);

if ceApos in CE then
Result := StringReplace(Result, '''', '&apos;',
[rfReplaceAll]);

if ceQuot in CE then
Result := StringReplace(Result, '"', '&quot;',
[rfReplaceAll]);

end;
procedure TXmlDDocument.AssignTo(Dest: TPersistent);
var
TV: TTreeView;
TN: TTreeNodes;
TreeNode: TTreeNode;
procedure AddChildNodes(ParXmlNode: TXmlDNode;
ParTreeNode: TTreeNode);

var
XmlNode:  TXmlDNode;
TreeNode: TTreeNode;

begin
XmlNode := ParXmlNode.FirstChild;
while (XmlNode <> nil) do begin
TreeNode := TN.AddChild(ParTreeNode, '');
AssignNodeToTreeNode(XmlNode, TreeNode);
AddChildNodes(XmlNode, TreeNode);
XmlNode := XmlNode.NextSibling;

end;
end;

begin
if Dest is TTreeNodes then begin
TN := TTreeNodes(Dest);
TV := TTreeView(TN.Owner);
TV.SortType := stNone;
TV.ReadOnly := True;
if TV.Images = nil then
TV.Images := TCustomImageList.Create(TV);

TV.Images.Clear;
TV.Images.GetResource(rtBitmap,
'XMLTREEVIEWNODES', 0, [], 0);

TV.Images.BkColor := clBlack;
TN.BeginUpdate;
TreeNode := TN.AddChild(nil, '');
AssignNodeToTreeNode(Self, TreeNode);
AddChildNodes(Self, TreeNode);
TN.EndUpdate;

end else
inherited AssignTo(Dest);

end;
procedure TXmlDDocument.AssignNodeToTreeNode(XmlNode:
TXmlDNode; TreeNode: TTreeNode);

begin
case XmlNode.NodeType of
xntDocument:
begin
TreeNode.Text := 'XML Document';
TreeNode.ImageIndex := 0;
AssignAttrNodesToTreeNodes(XmlNode, TreeNode);

end;
xntElement:
begin
TreeNode.Text := XmlNode.NodeName;
TreeNode.ImageIndex := 2;
AssignAttrNodesToTreeNodes(XmlNode, TreeNode);

end;
xntText:
begin
TreeNode.Text := XmlNode.NodeValue;
TreeNode.ImageIndex := 4;

end;
xntCDATASection:
begin
TreeNode.Text := XmlNode.NodeValue;
TreeNode.ImageIndex := 5;

end;
xntComment:
begin
TreeNode.Text := XmlNode.NodeValue;
TreeNode.ImageIndex := 6;

end;
end;
TreeNode.SelectedIndex := TreeNode.ImageIndex;
TreeNode.Data := XmlNode;

end;
procedure TXmlDDocument.AssignAttrNodesToTreeNodes(
ParXmlNode: TXmlDNode; ParTreeNode: TTreeNode);

var
I:  Integer;
S:  String;
TreeNode: TTreeNode;
XSN: TXmlDStructureNode;

begin
XSN := ParXmlNode as TXmlDStructureNode;
for I := 0 to (XSN.FAttrList.Count - 1) do begin
S := StringReplace(XSN.FAttrList.List.Strings[I],
'=', '="', []) + '"';

TreeNode := ParTreeNode.Owner.AddChild(ParTreeNode, S);
if ParXmlNode.NodeType = xntDocument then
TreeNode.ImageIndex := 1

else
TreeNode.ImageIndex := 3;

TreeNode.SelectedIndex := TreeNode.ImageIndex;
TreeNode.Data := XSN.FAttrList;

end;
end;



October 1999 The Delphi Magazine 75

follows. Assign is a virtual method,
which is called on the target object
and is passed a reference to the
source object. The class’s Assign
may know how to service the
request, in which case it does so
and we’re done. Otherwise it calls
its inherited Assign which goes
through the same process.

If no inherited Assign steps for-
ward to take responsibility, we end
up at TPersistent.Assign. It causes
an exception to be raised indicat-
ing no assignment compatibility
exists. But it doesn’t do so directly.
Instead, it calls the virtual method
AssignTo on the source object,
which gets the target object as a
parameter. If the source object’s
class knows how to transfer its
contents to the target, it does so. If
not, we go down the inheritance
chain of AssignTo. If we end up in
TPersistent.AssignTo, then the
exception is finally raised there.

In other words, we can effec-
tively extend an Assign target class
by providing the assignment proc-
essing in our own class. As Listing 3
shows, that’s what’s happening

in the AssignTo method of
TXmlDDocument.

The navigation of the document
structure should start to be look-
ing familiar by now. We use the
FirstChild and NextSibling prop-
erties to navigate through the doc-
ument structure. When at an
element node, we first pick up any
attributes and make tree view
nodes of them.

To facilitate finding our way
back into the document from a tree
view node, the node reference is
added to the tree node’s Data prop-
erty (thanks to Mark Chambers,
my Australian correspondent and
informal beta tester of this code,
for that suggestion). For an attrib-
ute ‘node’, there’s nothing to point
back to, so instead we record the
AttrList reference in the Data
property.

Figure 1 shows the results of this
operation. The document shown is
the same one built with the sample
code in part one of this article. I’ll
take responsibility for the graphics
here, and I’ll be the first one to
admit that the images for prolog

pseudo-attributes and regular
element attributes are a little lame.

Can We Quote You?
Before putting this to bed, there’s
one more small improvement we
can add to the framework to make
it more bulletproof. Recall from
part one, I spoke of five predefined
character entities in XML that
could be used instead of charac-
ters which could confuse the
parser. These were &lt;, &gt;,
&quot;, &apos; and &amp;, which
respectively stand in for less-than,
greater-than, quote, apostrophe
and ampersand.

Some of these characters are
more ‘dangerous’ than others. A
less-than character in open text is
a real parse wrecker. Upon finding
one of these, the parser thinks an
element has been encountered.
Within attributes values (which
may be enclosed in either quotes
or apostrophes) a quoting charac-
ter that’s the same one used to
enclose the value will make the
parser assume it’s found the end of
the value string.



76 The Delphi Magazine Issue 50

So why is this our problem? If an
application is going to be using
these sorts of characters, why not
make it responsible for supplying
the character entity substitutions
itself? The answer is that the appli-
cation could, in fact, do so. But the
next time the document is parsed,
the character entities will be
replaced by the characters being
represented. When using an XML
stream for persistent storage or for
some kind of work flow applica-
tion, we’ll have dodged the bullet
only the first time the document is
parsed. If we write out what was
presented to us by the parser, then
the next party to have the
document parsed will be out of
luck.

So, let’s see what we can do to
remedy this potential pitfall. One
solution would be to just blindly
plow through the text node and
attribute values and force a substi-
tution. The only problem there is
that we might then disrupt some
delicately planned and executed
strategy wherein the application is
taking on this responsibility. We
would not like to encounter an
entity reference (which would
start with a real ampersand) and
ruin it by turning that ampersand
into a character entity. So what can
we do?

The approach I finally decided
upon makes the assumption that
most applications won’t be using
entity references. If there’s the
occasional problem character in
the stream, we can let the class
framework deal with it and not
bother the client with details.
Furthermore, we’ll only concern
ourselves, by default, with three
characters.

First of all we’ll ensure that
quote characters, which are used
exclusively for enclosing attribute
values on output, have substitu-
tions made. But we’ll only do this
for attribute values. Secondly, we’ll
deal with less-than characters, but
only in text node values. Finally,
we’ll substitute ampersands in
either attribute values or general
text.

But we need to offer a way for a
client to bend those rules. To that
end, the framework provides a

➤ Figure 1

type declaration for CharEntity
(refer back to Listing 1), and two
properties: AttrCharEntities and
TextCharEntities. Their values
default in accordance with what
was described in the preceding
paragraph.

Then we’ll do one more thing.
We’ll provide two events on
TXmlDDocument which may be
assigned handlers to cater to spe-
cial situations. OnOutputAttrValue
and OnOutputText can be used to
override any default handling by
the class output facilities. The
handlers, both of type
TSubstituteCharEntities, supply a
var parameter for the value, and
another Boolean var parameter
available to indicate the value
should be left as is. Sender is either
the TXmlDText node reference or a
TXmlDAttrList reference as appro-
priate. You may notice I also added
an OwnerNode property to
TXmlDAttrList for use in situations
like this.

Out, DOM Spot!
Before wrapping up, I need to
mention two observations about
behavior I’ve discovered in the
late-stage testing of this code. Both
have to do with LoadFromStream
processing. LoadFromStream calls
the IXMLDOMDocument.loadXml
method to which a string parame-
ter is passed (as opposed to the
IXMLDOMDocument.load method
called by LoadFromFile). It turns
out that loadXml will perform no
validation processing, even when
requested and when the document
contains an external DTD refer-
ence. I have no way of determining
whether this is an msxml bug or is
intentional. Not knowing which is
the case, I’ve left the
ValidateOnParse parameter in
place, even though it has no effect
at the moment.

A second surprise at least has a
logical rationale. If one passes XML
having encoding="UTF-8" (in the
XML prolog) to LoadFromStream, the
msxml parser objects. UTF-8
specifies that the document uses
8-byte characters. But COM
demands WideStrings for parame-
ters. Delphi causes a conversion
to WideString when setting up

the loadXML call, and the parser rea-
sonably objects. The problem can
be circumvented by either not
using the encoding clause in the
prolog or by using LoadFromFile,
for which no problems are
reported by the parser.

So, are we finally finished here?
Actually, there are a few more nice
features I’d like to incorporate into
this class framework, and perhaps
we’ll do some of them in a future
article.

But Delphi 5 is expected to
arrive on my doorstep any day
now, and it will be a whole new
day. I think that for the moment the
best strategy is to assume a pos-
ture that’s... ahem... extensible.

David Baer is Chief Software
Architect at Spear Technologies in
San Francisco. His least favorite
Wagner opera is Parsifal, and he’d
be quite annoyed to have to write
a validating XML parser. Coinci-
dence? He can be reached at
dbaer@speartechnologies.com


	Data Redux
	A Parcel Of Parsers
	Start Your Parsers
	Load ‘Em Up
	Excavating DOM Nodes
	All This And AssignTo Too?
	Can We Quote You?
	Out, DOM Spot!

